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Project Objectives

. Evaluation of oxygen delignification as a

pretreatment for recovered fibre

. Utilize enzymatic hydrolysis for the

conversion of the recovered fibre

. Develop and empirical equation that could

predict sugar concentration as a function of:
Kappa number;
Enzyme loading; and
Initial fibre concentration



Rationale for the Project

e Pretreatment

— Important chemical and physical properties that determine
the hydrolyzability of cellulosic substrate

— The major role of lignin — both inhibits and affects the
accessibility of enzymes to cellulose

* Hydrolysis
— Enzyme production a major cost in the hydrolysis process

— Efficient enzymes, synergistic cocktails, improved
hydrolysis regimes



Factors that Affect Enzymatic Hydrolysis

« Substrate limitations
— Degree of polymerization
— Crystallinity
— Lignin content and distribution
— Enzyme accessible surface area

 Enzyme limitations
— End-product inhibition
— Thermal inactivation
— lrreversible enzyme adsorption



Pretreatment Options

Acid (steam explosion)
AFEX
Organosolv

Oxygen delignification



Pretreatment: Oxygen Delignification
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 In the O2 delignification process, lignin 1s activated by alkali
and degraded by oxygen derived radicals



Hydrolysis: Cellulase Enzyme Complex

Endo-cellulase: attacks non-crystalline,
amorphous regions of the cellulose chain
producing cellodextrins

(3-10 component sugar polymers)

Exo-cellulase:; attacks

chain ends, producing a

stalline = glucose dimer (cellobiose)
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B-glucosidase: produces
glucose by attacking
oligosaccharides and
cellobiose
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Enzymatic Action During Hydrolysis

Hydrolysis
Yield (%)

CELLULASE
beta-GLUCOSIDASE
CELLOBIOSE
GLUCOSE



Recovered Fibre

* Chemical composition:

Arabinose | Galactose | Glucose | Xylose | Mannose | Lignin
(%) (%) (%) (%) (%) (%)

HARDWOOD SOFTWOOD CORN STOVER

18-25% Lignin 25-35% Lignin 15% Lignin



O, Delignification: Recovered Fibre
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Pretreatment Conditions:
*T=150C

*t=60 min

* p(02) =100 psi
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Pretreatment Experimental Design

* Experimental design looked at the following
parameters:

* Independent variables
e Temperature (°C): 90, 120, 150
 Caustic (% of dry fibre): 2, 6, 10
e Time (min): 20, 40, 60

* Dependent variables
« Kappa: measure of lignin fraction
* Yield (%): initial pulp mass vs. delignified pulp mass
* Hydrolyzability (%): hexose sugar yield



Dependent Variable: Kappa

Kappa = 128.56 — 0.35(T) — 2.64(C) — 0.74(t) — 0.011(C)(T) + 0.21(C)? + 0.0069(t)% — 0.024(t)(C)

20 minutes

40 minutes
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Dependent Variable: Yield

Yield (%) = 116.47 - 0.22(T) — 0.70(C) — 0.088(t)

Oxygen Delignification Yield (%)

20 minutes
40 minutes
60 minutes
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Temperature (deg.C) Caustic Load (% of dry fibre)

Temperature (deg. C) W Sugar Loss (%)
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Dependent Variable: Hydrolyzability
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Caustic Load (% of dry fibre)| Caustic Load (% of dry fbre)
austic Load (% of dry fibre

Temperature (deg. C) Temperature (deg. C)

20 g/L, 39 FPU/g 20 g/L, 77 FPU/g

Hydrolyzability = 45.31 — 0.24(C2) + 4.16(C) + 0.11(T) + 0.12(t) Hydrolyzability = 52.10 -0.16(C?) + 3.22(C) + 0.11(T) + 0.092(t)



Dependent Variable: Hydrolyzability

100 g/L, 32 FPU/g

Hydrolyzability = 36.95 — 0.16(C?) + 2.64(C) + 0.084(T) + 0.81(t)



Empirical Model for Enzymatic Hydrolysis

* Goal: construct an equation for sugar concentration as a
function of Kappa number, enzyme loading, and starting
fibre concentration

ac _ _k(CJ”

dt Co

Where:

C = cellulose concentration (g/L)

Co = starting cellulose concentration (g/L)
K, n = empirical constants

S= 00[1— (1+kt(nl—1)/Co]y1]




Empirical Model for Enzymatic Hydrolysis

S= Co[l— (1+kt(nl—1)/cle

* Sugar concentration vs. time data was used to
determine n and k values for an optimized fit

* n and k values were related to Kappa number (K),
enzyme loading (E), and 1nitial solids loading (Co)

n = 025 . K1.26 . E—O.OZ . CO—0.4

k=0.9-E-Co%




Model Fit

s e Good model fit at

B 10FPU/g =10 FPU/g Model

Kappa 40, 20 g/L

* Initial rate/Final
sugar concentration




Model Fit

et = oot « Poor model fit at

=50 g/L Model A 100g/L 100 g/L Model

very high
substrate loading

* Mixing/Mass
transfer




Conclusions

« Oxygen delignification pretreatment of recovered fibre (87 Kappa)
produced dependent variables that related to temperature, reaction
time, and caustic loading:

Yield (%) = 116.47 - 0.22(T) — 0.70(C) — 0.088(t)
Kappa = 128.56 — 0.35(T) — 2.64(C) — 0.74(t) — 0.011(C)(T) + 0.21(C)? + 0.0069(t) — .024(t)(C)

Hydrolyzability (2% Solids, 20 FPU/g) = 45.31 — 0.24(C2) + 4.16(C) + 0.11(T) + 0.12(t)

Where:
T: temperature (°C)
C: caustic load (% of dry fibre)

t: time (minutes)



Conclusions

An empirical model was constructed to predict sugar
concentrations based on Kappa number, enzyme loading, and
starting fibre concentration:

1 j - S: sugar concentration (g/L)
S=Co|1- [—] Co: starting cellulose concentration (g/L)
1+ kt(n _1)/ Co k, n: empirical constants

The empirical model produced r? between 0.80 - 0.99 at low
substrate loadings, and decreased as the substrate loading increased

Model 1s specific to O, delignified recovered fibre
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